If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+5r-25=0
a = 2; b = 5; c = -25;
Δ = b2-4ac
Δ = 52-4·2·(-25)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15}{2*2}=\frac{-20}{4} =-5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15}{2*2}=\frac{10}{4} =2+1/2 $
| 8(y+4)=120 | | -0.5+2x-2=4 | | m/6+4=12 | | (x+4)^2=-3 | | 3x-10=21+9 | | 0.1(x+50)-0.02(x-20)=9.4 | | 4=3x+2x-4-x | | x+79=2x | | 3x-6=9x-96 | | 3x-6=9x+96 | | 0.4x-0.2x-3=5 | | x(x+6)-4=8x | | 24+2x=3x+(7-1) | | 3(x+5)=4x+2 | | d-0.2d= | | -75=21=12x | | 4-4x=-6x+26 | | f(-6)=12+10(-6)−5(-6)^2 | | 4x^2-43x=23 | | 4x-12=15+3x/3 | | -4x+2x+1=5 | | 4x=-12. | | 8y-45=3y | | 4x+3=7. | | -x+5=10. | | 3-4x=3x-81 | | 10x+4=-15x-6- | | -4x=3x-1-x | | 8u-68+8u+8=180 | | 6+7x9+11=80 | | 3x–9=180 | | -8c-6=-46 |